3.9 - Acid-base equilibria

Acid dissociation constant, K_{a}

When a weak acid dissociates an equilibrium is set up so it has an equilibrium constant.

$$
\begin{gathered}
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left.\left[\mathrm{H}^{+}\right][\mathrm{A}]\right)}{[\mathrm{HA}]} \mathrm{mol} \mathrm{dm}^{-3}
\end{gathered}
$$

The higher the K a value, the stronger the acid.
$\mathrm{pKa}=-\log K_{\mathrm{a}}$
The lower the $\mathrm{p} K_{\mathrm{a}}$, the stronger the acid.

Lowry-Bronsted theory

Acids are proton (H^{+}) donors.
Bases are proton (H^{+}) acceptors.
Conjugate acids are formed by the addition of H^{+}to a base. Conjugate bases are formed by the loss of H^{+}from an acid.

e.g. HCl
acid 1
+
base
2

A strong acid is fully dissociated in water.
A weak acid is only partially dissociated in water.

Buffer solutions

Buffers are solutions whose pH stays relatively constant as a small amount of an acid or alkali is added.

Buffers are used where pH is very important, e.g. regulating the pH of blood and storing biological molecules such as enzymes. Industrial examples are in fermentation and making dyes.

Ionic product of water, K_{w}
In pure water, a small fraction of molecules dissociates into H^{+}and OH^{-}ions. An equilibrium is formed.
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$
The amount of water that dissociates is tiny, so its concentration can be considered to be constant, and a new equilibrium constant, K_{w}, is defined.
$\mathrm{K}_{w}=\left[\mathrm{H}^{+}\right][\mathrm{OH}-] \quad \mathrm{mol}^{2} \mathrm{dm}^{-6}$
At $25^{\circ} \mathrm{C}, \mathrm{Kw}_{w}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$.
In pure water: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$and $\mathrm{K}_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{w}=\left[\mathrm{H}^{+}\right]^{2}=1.00 \times 10^{-14}$ and $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=7$
The ionic equation for all neutralisation reactions is the reverse of the equilibrium above, i.e. $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons$ $\mathrm{H}_{2} \mathrm{O}$

Acid buffers

These consist of a weak acid and a salt of the same acid, e.g. ethanoic acid and sodium ethanoate. $\mathrm{CH}_{3} \mathrm{COONa} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$
$\mathrm{CH}^{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}-+\mathrm{H}^{+}$
The solution contains lots of $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions and $\mathrm{CH}_{3} \mathrm{COOH}$.
Adding an acid increases the amount of H^{+}and the equilibrium shifts to the left, removing the H^{+}ions by reaction with $\mathrm{CH}_{3} \mathrm{COO}^{-}$.
Adding an alkali increases the amount of OH^{-}ions, and this removes some of the H^{+}ions. This causes the equilibrium to shift to the right, producing H^{+}ions from $\mathrm{CH}_{3} \mathrm{COOH}$.
$\left[\mathrm{H}^{+}\right]=10-\mathrm{PH}$
$\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{Ka} \times[\mathrm{HA}]$

Calculating pH

Since $\mathbf{p H}=-\log \left[\mathrm{H}^{+}\right]$, to calculate the pH of any solution, the concentration of $\mathrm{H}+$ ions must be found.
For a strong acid, $\mathrm{HX},\left[\mathrm{H}^{+}\right]=[\mathrm{HX}]$.
e.g. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$,

$$
\mathrm{pH}=-\log 0.1=1
$$

For a strong dibasic acid, $\mathrm{H}_{2} \mathrm{~A}$, that fully dissociates, $\left[\mathrm{H}^{+}\right]=[2 \mathrm{HA}]$. To calculate hydrogen ion concentration from pH use
e.g. for a sample with a pH of 3.6,
$\left[\mathrm{H}^{+}\right]=10^{-3.6}=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
For a strong base, MOH , since $\mathrm{K}_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\left[\mathrm{H}^{+}\right]=\mathrm{Kw} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} /\left[\mathrm{OH}^{-}\right]$
e.g. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$,

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=1.0 \times 10-14 / 0.1=1.0 \times 10^{-13} \mathrm{~mol} \mathrm{dm}^{-3}} \\
& \mathrm{pH}=-\log 1.0 \times 10^{-13}=13
\end{aligned}
$$

For a weak acid, HA,

$$
\text { since } K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { and }\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]
$$

e.g. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}=1.7 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$
$[\mathrm{H}+]=\sqrt{ } 1.7 \times 10-5 \times 0.1=1.3 \times 10-3 \mathrm{~mol} \mathrm{dm}-3$
$\mathrm{pH}=-\log 1.3 \times 10^{-3}=2.9$
To work out Ka given pH , use $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$ to calculate $\left[\mathrm{H}^{+}\right]$and
substitute it in $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]}$
e.g. For a $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HClO with a pH of 3.92
$\left[\mathrm{H}^{+}\right]=10^{-3.92}=1.2 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[1.2 \times 10^{-4}\right]^{2}}{0.5}=2.9 \times 10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$

3.9 - Acid-base equilibria

[^0]$$
\mathrm{pH} \text { for buffers }
$$
Use the expression $K a=\left(\left[\mathrm{H}^{\wedge}+\right]\left[\mathrm{A}^{\wedge}-\right]\right) /([\mathrm{HA}])$
$\left[\mathrm{A}^{-}\right]=$concentration of salt, $[\mathrm{HA}]=$ concentration of acid
$\left[\mathrm{H}^{+}\right]=\mathrm{Ka} \times([\mathrm{HA}]) / \mathrm{A}^{\wedge}-$
If $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$then $\left[\mathrm{H}^{+}\right]=K$ a and $\mathrm{pH}=-\log \mathrm{Ka}=\mathrm{pKa}$
e.g. for a solution containing $0.010 \mathrm{~mol} \mathrm{dm}-3$ ethanoic
acid and 0.020 mol dm
(Ka for ethanoic acid $\left.=1.78 \times 10^{-5} \mathrm{~mol} \mathrm{dm} \mathrm{dm}^{-3}\right)$
$\left[\mathrm{H}^{+}\right]=1.78 \times 10^{-5} \times 0.0100 .020=8.9 \times 10^{-6} \mathrm{~mol} \mathrm{dm}{ }^{-3}$
$\mathrm{pH}=-\log 8.9 \times 10^{-6}=5.1$

Salt hydrolysis Salts of a strong acid/strong base, e.g. $\mathrm{NaCl}: \mathrm{pH}=7$.

 None of the ions present, $\mathrm{Na}+$ and $\mathrm{Cl}-$, react with water. Salts of a strong acid/weak base, e.g. NH4Cl: $\mathrm{pH}<7$. The NH4+ ions react with water to establish the equilibrium$\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
Hydrogen ions are formed so pH is lower than 7
Salts of a weak acid/strong base, e.g. CH3COONa: pH > 7.
The $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions react with water to establish the equilibrium
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
Hydroxide ions are formed so pH is greater than 7 .

[^1]

Titration curves

All solutions are $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$, and the original volume is $25 \mathrm{~cm}^{3}$.
The vertical regions mark the equivalence point, i.e. the volume required for neutralisation.

Strong acid - strong base
Graph starts at pH 1. Slow increase in pH as first $20 \mathrm{~cm}^{3}$ is added. Sudden increase in pH from about 3 to 11 around $25 \mathrm{~cm}^{3}$ (vertical line). Most indicators suitable. Slow increase to pH of around 13 as next $25 \mathrm{~cm}^{3}$ added.

Strong acid - weak base
Graph starts at pH 1. Slow increase in pH as first $20 \mathrm{~cm}^{3}$ is added. Sudden increase in pH from about 3 to 8 around $25 \mathrm{~cm}^{3}$. Suitable indicator - methyl orange. Increase in pH which levels off at around $35-40 \mathrm{~cm}^{3}$ due to buffer effect, before increasing to pH 11.

Weak acid - strong base
Graph starts at around pH 3. Increases gradually, then levels off around 10-15 cm^{3} due to buffer effect, before increasing again. Sudden increase in pH from about 6 to 11 around $25 \mathrm{~cm}^{3}$. Suitable indicator - phenolphthalein. Slow increase to pH of around 13 as next $25 \mathrm{~cm}^{3}$ is added.

Weak acid - weak base

Volume $\mathrm{NH}_{3}\left(\mathrm{~cm}^{3}\right)$

Graph has no vertical region so can't be studied using an indicator. A pH probe must be used.

[^0]: pH for buffers
 Use the expression $K_{a}=\left(\left[\mathrm{H}^{\wedge}+\right]\left[\mathrm{A}^{\wedge}-\right]\right) /([\mathrm{HA}])$
 $\left[\mathrm{A}^{-}\right]=$concentration of salt, $[\mathrm{HA}]=$ concentration of acid $\left[\mathrm{H}^{+}\right]=\mathrm{Ka} \times([\mathrm{HA}]) / \mathrm{A}^{\wedge}$ -
 If $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$then $\left[\mathrm{H}^{+}\right]=K a$ and $\mathrm{pH}=-\log K_{a}=\mathrm{p} K_{\mathrm{a}}$
 e.g. for a solution containing $0.010 \mathrm{~mol} \mathrm{dm}-3$ ethanoic acid and $0.020 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium ethanoate,
 (Ka for ethanoic acid $=1.78 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$)
 $\left[\mathrm{H}^{+}\right]=1.78 \times 10^{-5} \times 0.0100 .020=8.9 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{pH}=-\log 8.9 \times 10^{-6}=5.1$

[^1]: Indicators
 Indicators are very weak acids that change colour as the pH changes. They change colour over a range of pH values, not at a specific pH . To make sure that an indicator is suitable for a titration, the pH range over which it changes colour must lie within the vertical part of the titration curve.

