These terms describe the motion of a body:

1. Stationary
2. Constant speed or velocity
3. Accelerating
4. Decelerating

Remember: Velocity is the speed in a specific direction.

Motion is described using distance-time graphs and velocity-time graphs. It is important to work out which type it is before you start to describe the graph as the shapes represent different things on each type. Look for the labelling on the axes to help recognise the graph.
Motion

Calculating speed (or velocity)

Speed $(\mathrm{m} / \mathrm{s})=\frac{\text { distance }(\mathrm{m})}{\text { time }(\mathrm{s})}$

Calculating acceleration (or deceleration)

Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)=\frac{\text { change in velocity }(\mathrm{m} / \mathrm{s})}{\text { time }(\mathrm{s})}$ time (s)

Using velocity-time graphs travelled between seeing the hazard and braking.

Factors that affect the distance

The distance travelled can be calculated by calculating the area under the line of the graph.

Total stopping distance
$=$
Thinking distance

Thinking distance $=9 \mathrm{~m}$
This depends on the reaction time of the driver and is the distance

Car travelling at $13.5 \mathrm{~m} / \mathrm{s}$
(30mph) has a total stopping distance of 23 m

This is the distance the car travels whilst braking. cbac

[^0]- Speed
- Road conditions (e.g. rain)
- Mas of the car
- Condition of the brakes - Condition of the tyres

[^0]: - Speed
 - Alcohol or drugs
 - Tiredness
 - Mobile phones

