Unit 1: Logical Operations

_	5 6:				
Term	Definition				
Propositional logic	 A proposition is a simply a statement. 				
	 Propositional statements when evaluated will result in either true or false. 				
	 Propositional logic considers the way statements interact with each other. 				
	 Propositional logic follows mathematical rules. 				

Logic statements

Most rules to simplify a logic statement are not dependent on the contents of the statement but on the structure of the statement.

Propositional logic uses symbols to represent logical links between propositions. A logic statement includes propositions linked connected by logical links.

_	- C						
Term	Definition						
Propositional logic symbols		Propositional logic uses symbols to represent logical links					
Symbol	Formal term	ormal term Informal term					
•	Connection	AND					
+	Separation	OR					
Ā	Negation	NOT					
\oplus	Exclusive separation	XOR					
Term	Definition						
Truth table	A truth table is a mathematical table used to analyse a set of local						

statements.

Connection (AND)

Α	В	A AND B
1	1	1
1	0	0
0	1	0
0	0	0

A AND B can be written using a symbol as A.B Separation (OR)

Α	В	A AND B
1	1	1
1	0	1
0	1	1
0	0	0

A AND B can be written using a symbol as A + B Negation (NOT)

Α	Ā
1	0
0	1

A AND B can be written using a symbol as Ā Exclusive separation (XOR)

Α	В	A AND B
1	1	0
1	0	1
0	1	1
0	0	0

A AND B can be written with a symbol as A \oplus B

Bitwise manipulation and masking

Bitwise operations are similar to Boolean operations except they work on individual bits in a byte. A mask or bitmask is data that is used to carry out bitwise operations.

Examples:

Masking bits to 1, using 1111 0000 with an OR operation:

1	0	0	1	0	1	0	1
1	1	1	1	0	0	0	0
1	1	1	1	0	1	0	1

This operation masks the four most significant bits leaving the four remaining bits unchanged.

Masking bits to 0, using 0000 1111 with an AND operation:

1	0	0	1	0	1	0	1
0	0	0	0	1	1	1	1
0	0	0	0	0	1	0	1

This operation masks the four most significant bits to zero leaving the remaining four bits unchanged.

An ${\tt XOR}$ operation can be used to toggle bits:

1	0	0	1	1	1	0	1
0	0	0	0	1	1	1	1
1	0	0	1	0	0	1	0
1	0	0	1	0	1	0	1
1	1	1	1	1	1	1	1
0	1	1	0	1	0	1	0