
Unit 1: Program construction

In order to write software a programmer will use a
programming language to write code in a way that is
understandable to the programmer.
However, the processor will not be able to run
the programmer’s code and therefore it has to be
translated into machine code that can be processed.
Translators are software that convert programs from
one language to another. There are three types of
translator: compiler, interpreter and assembler.

Term Definition
Compiler A compiler is a program that

converts high level language
programs into machine code for
execution at a later time. The
entire program is converted at
one time.

Interpreter An interpreter is a program
which converts code one line at
a time, into machine code and
executes it.

Assembler An assembler is a program which
converts the low-level assembly
programming language into
machine code.

Interpreters and compilers are used to translate
high level language programs.

Term Definition
High level
Language

A high level language allows
programmers to write
programs that are independent
of a particular type of
computer. Such languages are
considered high level because
they are closer to spoken
language and further away
from machine code.

 Source code Programming code that has
not yet been translated into an
executable file.

Object code Translated code that can be
executed by a computer.

Interpreter
An interpreter reads a statement from the high level
code and converts that line of the source code into
object code and executes it straight away. If there is
an error in a line of source code the interpreter will
stop the translation process.
Interpreters are often used in the development of a
program as they make debugging the code easier.
No executable file is produced, and the program is
translated from the beginning each time it is run.

Compiler
A compiler translates the entire source code
program into object code before the program is
executed producing an executable file.
An advantage of a compiler is that once the code has
been translated it can be run many times without
having to be translated again.
A disadvantage of a compiler is that if there is an
error in the code the translation will carry on and the
error is not reported until the end of the process.
The compilation process involves the following steps:
Lexical analysis:
•	 Comments (annotations) and unneeded spaces

are removed.
•	 Keywords, constants and identifiers are replaced

by tokens.

Term Examples
Keywords IF, WHILE, DO, REPEAT

Constants 100, 3.1429, -73

Identifiers Variable names,
subroutine names

Symbol table construction
•	 A symbol table is created which holds the

addresses of variables, labels and subroutines.

Unit 1: Program construction

Syntax analysis
•	 Tokens are checked to see if they match the

spelling and grammar expected, using standard
language definitions. This is done by parsing
each token to see if it uses the correct syntax
for the programming language.

•	 If syntax errors are found, error messages will
be produced.

Term Definition
Parsing Analysing a string of tokens

Syntax The rules for the structure of
statements in a programming
language

Semantic analysis
•	 Variables are checked to ensure that they have

been properly declared and used.
•	 Variables are checked to ensure that they are of

the correct data type – real values are not being
assigned to integers.

•	 Operators are checked to ensure that they are
valid for the type of variable being used.

Code generation and optimisation
•	 Machine code is generated.
•	 Code optimisation may be used to ensure that

the object code is as efficient, fast and less
resource intense as possible.

op target address
2 1024 decimal

000010 00000 00000 00000 10000 000000 binary

Programming errors
When an error occurs in code, the program fails to
compile or to run. Error messages are displayed to
help the programmer diagnose what has gone wrong.

Syntax errors
A syntax error is an error in the source code of a
program. As the code in a computer programs must
follow strict syntax rules to compile correctly, any
aspects of the code that do not follow the syntax of the
programming language will cause a syntax error.
Incorrect: Whale x < 6		 Correct: While x < 6

Runtime / execution error
A runtime error only happens when the code is run. It
is an error that is difficult to foresee before the code is
run.
A typical runtime error is an attempt to divide a
number by zero which will cause the program to crash.

Logical error
A logical (logic) error is a mistake in a program's source
code that results in incorrect or unexpected behaviour.
An example would be using the wrong operator in a
calculation.

Linking error
An error that occurs when a programmer calls a
function within a program, but the correct library has
not been linked to the program.
An example would be when the code uses the square
root function that has not been linked to the program.

Rounding error
A rounding error is the difference between a
rounded-off numerical value and the actual value. A
rounded quantity is represented by a numeral with a
fixed number of allowed digits.
Actual value: 3.1429	 Rounded value: 3.14

Truncation error
Truncation error is the difference between a
truncated value and the actual value. A truncated
quantity is represented by a numeral with a fixed
number of allowed digits, with any excess digits
“chopped off”.
Actual value: 7.99	 Truncated value: 7
This creates an error of - 0.99.

Example Question
The following program is intended to calculate a total
mark achieved by one student who has taken 4 tests.
The program contains two errors.

total is integer
count is integer
mark is integer

total = 0

for count = 1 to 4
	input mark
	total = total – mark
next count

Name the errors and write down the correct code.

Syntax error – input Mark
Logic error – Total = Total + Mark

