Unit 2: Dry run, amend and write algorithms

Term	Definition
Algorithm	In programming, an algorithm is a set of instructions that can be used to solve a given problem.
Dry run	A dry run is the process of a programmer manually working through their code to trace the value of variables.

A **dry run** involves a programmer working through the code of a program to trace the value of variables to see that it is used and updated as expected.

A programmer will usually use a **trace** table to record the value of the variables as they work through the program. The table will have a column for each variable and each row will represent a line of the programming code.

Example question 1

```
outValue is integer
2
     set outValue = 0
3
4
     Declare Subroutine Multi
5
6
      for i = 1 to 3
       for j = 1 to 3
7
8
       outValue = i * j
9
        output outValue
10
       next j
11
      next i
12
13
     End Subroutine
Complete the table in the electronic
answer document to show all the outputs
of this algorithm.
                                  [9]
```

Trace table for solution

i	j	Output value
1	1	1
1	2	2
1	3	3
2	1	2
2	2	4
2	3	6
3	1	3
3	2	6
3	3	9

Amending algorithms

In some exam guestions candidates will be asked to amend an algorithm that contains an error or to insert missing lines.

Example question 2

An algorithm is intended to calculate the area of a circle. The algorithm accepts a single input; the radius, and outputs the area. The area is calculated by multiplying Pi by the radius squared.

-	set Pi = 3.142
2	radius is real
3	
Į	
5	Declare FindArea
5	{procedure to calculate the area of a circle
7	
}	
)	
0	End Subroutine
.1	
.2	startMainProg
.3	output "Type in the radius"
4	
. 5	
6	call FindArea
.7	
. 8	output "The area is:"
9	
20	endMainProg

Lines 3, 8, 14 and 19 are missing.

algorithm.

- else is TRUE
- output area
- input radius
- input flag
- area = Pi * radius * radius • End Subroutine • area is real

Writing algorithms

Sometimes a question will ask for an algorithm to be written for a given situation.

Example question 3

An algorithm is required to help scientists monitor the level of a pollutant in a river. They take four readings of the level of pollutant in the river then use a computer to analyse the data. The value of each reading will be an integer in a range from 1-10.

The algorithm should:

- accept the intput of each reading
- output the total of all the numbers entered
- output the largest number entered
- output the smallest number entered

below.

Enter reading: 6 Enter reading: 3 Enter reading: 2 Enter reading: 4

Total: 15 Mean: 3.75 Largest: 6 Smallest: 2

Write an algorithm to meet these requirements. Enter your algorithm into the electronic answer document. [6]

Using four of the lines of code below complete the

- output the mean of all the numbers entered
- An example of the *input* and output required is shown