
Unit 2: Programming languages

Object oriented programming (OOP)

Key terms

Term Definition
OOP Programming based on 

collections of objects that interact 
with each other.

Object An object is an instance of a class. 
An object can be a data structure, 
a variable or a function and 
will have an allocated memory 
location.

Class A class is an entity that 
determines how an object will 
behave and what the object will 
contain. It is a template or a set 
of instructions to build a specific 
type of object.

Methods A method is an action or 
behaviour that an object is able to 
perform.

Encapsulation The process of wrapping data and 
the code that operates on it into 
a single entity. The variables and 
methods are wrapped up inside 
the class.

Abstraction The process of hiding non-
essential features and showing 
the essential features.

Inheritance A new (derived) sub-class inherits 
the states and behaviours of the 
existing (base) super class. 

Polymorphism The concept that allows actions to 
act differently based on the object 
performing the action.

Some advantages of OOP
•	 Conceptual: Program objects are modelled on real 

world objects.
•	 Modularity: The source code for an object can 

be written and maintained independently of the 
source code for other objects. 

•	 Code re-use: If an object already exists it can 
used in other programs. This allows specialists 
to implement/test/debug complex, task-specific 
objects.

•	 Debugging: If a particular object turns out to be 
problematic, it can be replaced with an object that 
functions correctly.

Objects and Classes
Real world objects have certain states. For example, 
a glass bottle can be full, empty, or somewhere in 
between. It can have a colour, weight, diameter and 
circumference.
A software object modelled after a glass bottle could 
have Boolean values for full or empty and a ‘real’ 
value for interim states. The glass bottle object could 
also have variables to represent colour, size, etc. 
The glass bottle could then be used as a base class, 
or super class for other, more specialised bottles. 
For example, Energy drink bottle could become a 
sub-class of Glass bottle, that only allows for certain 
colours and sizes.

A Java interactive development environment 
that allows the development of two-dimensional 

graphical applications, like simulations and 
interactive games.

Greenfoot Class Variables and Methods
Class variables hold attributes shared in common 
among all objects of a class. Class methods act on 
attributes of the whole class through class variables. 
Class methods cannot access instance variables.
Instance variables and methods are object specific.

Greenfoot
Course specification requirement to “Design, write, 
test and refine Java programs within the Greenfoot 
environment, using these skills:”
Create new and extend existing classes 
Create new and edit existing objects 
Create new and edit existing worlds

Write and invoke methods 
Change existing methods 
Create new and edit existing properties (including 
public, private, static, etc.)

Add and remove objects from worlds 
Use actors 
Move objects around a world

Keyboard input 
Add and play sounds

Implement and use parameter passing (by value and 
by reference) 
Access one object from another

Implement object collision detection 
Implement random number generation 
Use the concept of inheritance and encapsulation. 


